Problem with a solution proposed by Arkady Alt , San Jose , California, USA

For sequence $\{a_n\}_{n\geq 1}$ defined recursively by $a_{n+1} = \frac{a_n}{1+a_n^p}$ for $n \in \mathbb{N}$, $a_1 = a > 0$, determine all positive real p for which series $\sum_{n=1}^{\infty} a_n$ is convergent. Solution.

First note that $a_n > 0$ for all $n \in \mathbb{N}$ ($a_1 = a > 0$ and from supposition $a_n > 0$ follows $a_{n+1} = \frac{a_n}{1 + a_n^p} > 0$. Also note that sequence $\{a_n\}_{n \ge 1}$ is decreasing. Indeed $a_n - a_{n+1} = a_n - \frac{a_n}{1 + a_n^p} = \frac{a_n^{p+1}}{1 + a_n^p} > 0.$ Therefore, sequence $\{a_n\}_{n \ge 1}$ convergent to some nonnegative limit x. Then $x = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{a_n}{1 + a_n^p} = \frac{x}{1 + x^p} \implies x = 0.$ Thus, $\lim_{n \to \infty} a_n = 0.$ Since recurrence $a_{n+1} = \frac{a_n}{1+a_n^p}$ can be rewritten in the form $a_{n+1}^p = \frac{a_n^p}{(1+a_n^{\alpha})^p},$ then denoting a_n^p via b_n we obtain recurrence then denoting a_n^p via b_n we obtain recurrence (1) $b_{n+1} = \frac{b_n}{(1+b_n)^p}$, with initial condition $b_1 = a^p$. Since $\frac{1}{b_{n+1}} - \frac{1}{b_n} = \frac{(1+b_n)^p - 1}{b_n}$ and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n^p = 0$ then $\lim_{n \to \infty} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n}\right) = \lim_{n \to \infty} \frac{(1+b_n)^p - 1}{b_n} = p$. Hereof, by Arithmetic Mean Limit Theorem (if $\lim_{n \to \infty} x_n = a$ then $\lim_{n \to \infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = a$) we obtain $\lim_{n \to \infty} \frac{1}{nb_n} = \lim_{n \to \infty} \frac{\frac{1}{b_n} - \frac{1}{b_1}}{n-1} \cdot \frac{n-1}{n} = \lim_{n \to \infty} \frac{\sum_{k=2}^n \left(\frac{1}{b_k} - \frac{1}{b_{k-1}}\right)}{n-1} =$ $\lim_{n \to \infty} \left(\frac{1}{b_n} - \frac{1}{b_n} \right) = p.$ Thus, $\lim_{n \to \infty} n^{\frac{1}{p}} a_n = \lim_{n \to \infty} \left(n a_n^p \right)^{\frac{1}{p}} = \lim_{n \to \infty} \left(n b_n \right)^{\frac{1}{p}} = \left(\frac{1}{p} \right)^{\frac{1}{p}}$ and, therefore, $\lim_{n \to \infty} \frac{a_n}{\left(\frac{1}{np} \right)^{\frac{1}{p}}} a_n = 1.$ Hence, $\sum_{n=1}^{\infty} a_n$ is convergent iff $\sum_{n=1}^{\infty} \frac{1}{(nn)^{\frac{1}{p}}}$ is convergent, that is iff $\frac{1}{p} > 1 \iff$ p < 1.