Problem with a solution proposed by Arkady Alt , San Jose ,
California, USA
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For sequence {a,},~, defined recursively by a,+1 = 7np for n € N,
> ab
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a1 = a > 0,determine all positive real p for which series ) a,, is convergent.
n=1

Solution.

First note that a,, > 0 for all n € N ( a1 = a > 0 and from supposition

Qnp
> 0.
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Also note that sequence {a,},~, is decreasing.
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Therefore, sequence {an}n>1 convergent to some nonnegative limit z.
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Indeed a,, — any1 = a, —

Then z = lim a = lim = — x=0.
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Thus, lim a, = 0.
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Since recurrence a1 = 1 +n 7 can be rewritten in the form
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then denoting a? via b,, we obtain recurrence
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1 bpt1 = ———— with initial condition b; = a?.
(1) 1 A1) with initial condition b; = a
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Since - — = % and lim b, = lim a? =0 then
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Hereof, by Arithmetic Mean Limit Theorem (if lim =z, = a then
lim 2 R Bt T a ) we obtain
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Thus, lim nra, = lim (ne?)? = lim (nb,)P = <) and, therefore,
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Hence, > a, is convergent iff >
n=1 n=1 (
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T is convergent,that is iff — > 1 <=
np)P P
p <l






