Problem with a solution proposed by Arkady Alt , San Jose , California, USA

For sequence ${a_n}_{n\geq1}$ defined recursively by $a_{n+1} = \frac{a_n}{1+a_n}$ $\frac{a_n}{1 + a_n^p}$ for $n \in \mathbb{N}$, $a_1 = a > 0$, determine all positive real p for which series $\sum_{n=1}^{\infty} a_n$ is convergent. Solution.

First note that $a_n > 0$ for all $n \in \mathbb{N}$ ($a_1 = a > 0$ and from supposition $a_n > 0$ follows $a_{n+1} = \frac{a_n}{1+a_n}$ $\frac{a_n}{1+a_n^p} > 0.$ Also note that sequence ${a_n}_{n\geq1}$ is decreasing. Indeed $a_n - a_{n+1} = a_n - \frac{a_n}{1+a_n}$ $\frac{a_n}{1 + a_n^p} = \frac{a_n^{p+1}}{1 + a_n^p}$ $\frac{a_n}{1 + a_n^p} > 0.$ Therefore, sequence ${a_n}_{n\geq1}$ convergent to some nonnegative limit x. Then $x = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{a_n}{1 + a_n}$ $\frac{a_n}{1 + a_n^p} = \frac{x}{1 + a_n^p}$ $\frac{x}{1+x^p} \implies x = 0.$ Thus, $\lim_{n \to \infty} a_n = 0.$ Since recurrence $a_{n+1} = \frac{a_n}{1+a_n}$ $\frac{a_n}{1 + a_n^p}$ can be rewritten in the form $a_{n+1}^p = \frac{a_n^p}{(1+a_1)^p}$ $\frac{a_n}{(1 + a_n^{\alpha})^p},$ then denoting a_n^p via b_n we obtain recurrence (1) $b_{n+1} = \frac{b_n}{(1 + b_n)^n}$ $\frac{b_n}{(1+b_n)^p}$, with initial condition $b_1 = a^p$. Since $\frac{1}{b_{n+1}}$ – 1 $\frac{1}{b_n} = \frac{(1 + b_n)^p - 1}{b_n}$ $\frac{b_n}{b_n}$ and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n^p = 0$ then $\lim_{n \to \infty} \left(\frac{1}{b_{n+1}} \right)$ $\frac{1}{b_{n+1}}$ -1 b_n \setminus $=\lim_{n\to\infty}\frac{(1+b_n)^p-1}{b_n}$ $\frac{p_n}{b_n} = p.$ Hereof, by Arithmetic Mean Limit Theorem (if $\lim_{n \to \infty} x_n = a$ then $\lim_{n \to \infty} \frac{x_1 + x_2 + \ldots + x_n}{n}$ $\frac{n}{n}$ = a) we obtain $\lim_{n \to \infty} \frac{1}{nb}$ $\frac{1}{nb_n} = \lim_{n \to \infty}$ 1 $\overline{b_n}$ – 1 b_1 $\frac{n}{n-1} \cdot \frac{n-1}{n}$ $\frac{1}{n} = \lim_{n \to \infty}$ $\sum_{k=2}^{n} \left(\frac{1}{b_k}\right)$ $\overline{b_k}$ – 1 b_{k-1} $\overline{ }$ $\frac{n(n-1)}{n-1}$ = $\lim_{n \to \infty} \left(\frac{1}{b_n} \right)$ $\overline{b_n}$ – 1 b_{n-1} $\overline{ }$ $= p.$ Thus, $\lim_{n \to \infty} n^{\frac{1}{p}} a_n = \lim_{n \to \infty} (n a_n^p)^{\frac{1}{p}} = \lim_{n \to \infty} (n b_n)^{\frac{1}{p}} =$ (1) p $\int_{\overline{p}}^{\frac{1}{p}}$ and, therefore, $\lim_{n \to \infty} \frac{a_n}{\sqrt{1}}$ $\left(\frac{1}{np}\right)^{\frac{1}{p}}$ $a_n=1.$ Hence, $\sum_{n=1}^{\infty} a_n$ is convergent iff $\sum_{n=1}^{\infty}$ 1 $(np)^{\tfrac{1}{p}}$ is convergent, that is iff $\frac{1}{p} > 1 \iff$ $p < 1$.